IET40

CONDUCTIVITY TRANSMITTER

QUICK START GUIDE

KLAY-INSTRUMENTS

Preface

Product guarantee

This instrument has a guarantee against defects in materials and workmanship fora period of three years from the date of shipment. During this period LTH will, at its own discretion, either repair or replace products that prove to be defective.

Limitation of guarantee

The foregoing guarantee does not cover damage caused by accidental misuse, abuse, neglect, misapplication or modification.

No guarantee of fitness for a particular purpose is offered. The user assumes the entire risk of using the product. Any liability of LTH is limited exclusively to the replacement of defective materials or workmanship.

There are no user serviceable parts, including fuses etc., within the unit. Any attempt to dismantle the instrument will invalidate the guarantee.

Disclaimer

LTH Electronics Ltd reserves the right to make changes to this manual or the instrument without notice, as part of our policy of continued developments and improvements.

All care has been taken to ensure accuracy of information contained in this manual. However, we cannot accept responsibility for any errors or damages resulting from errors or inaccuracies of information herein.

Copyright and trademarks

All rights reserved. Translation, reprinting or copying by any means of this manual, complete or in part or in any different form requires our explicit approval.

IET40 is a trademark of LTH Electronics Ltd

4th edition Part number: 6110 LTH Electronics Ltd Chaul End Lane Luton LU4 8EZ Bedfordshire UK

Telephone: Fax: Email Web site 06/09/2006 +44 (0) 1582 593693 +44 (0) 1582 598036 sales@lth.co.uk www.lth.co.uk

IET40 Conductivity Transmitter Installation

PRECAUTIONS TO BE TAKEN DURING INSTALLATION OF THE IET40

- 1. Site the instrument where access is possible for calibration.
- 2. Fit isolating valves if possible to permit removal for inspection.
- 3. Do not position the sensor where trapped air can collect.
- 4. Do not force sensor through an opening too small for it.
- 5. Allow enough space around the sensor for the fluid to circulate and to prevent field distortion (12mm radially, 25mm below).
- 6. Make sure the calibration resistor is removed from the sensor.
- 7. The Sensor is Factory Calibrated, check as required.
- 8. Route the cable away from power lines where possible.
- 9. Do not over tighten the sensor into the receptacle.
- 10. Leave sufficient cable for removing the transmitter if required.
- 11. Terminate the cable screen to Earth to prevent interference.
- 12. Do not leave long lengths of wire unscreened.
- 13. Outputs are not isolated from comms, power supply or each other.
- 14. The DC Supply must not go below 12 V for the Current Output drivers to work properly.
- 15. The DC Supply must not exceed 30 V to prevent damage to the Sensor electronics.
- 16. Only use a CE marked power supply unit of the correct current and voltage ratings.
- 17. Check that the cable gland which is used fully seals against liquid intrusion.
- 18. Check the top cover gasket and replace if necessary before tightening down the lid.
- 19. Installation of the IET40 should be made using a multi-core cable to the terminal blocks.
- 20. Use a cable with enough cores to make all of the required connections.
- 21. The 15 way D-type connection can be used separately or simultaneously for programming.
- Serial Communication is via a 4-wire RS485 interface using a Modbus[™] protocol.

TERMINAL BLOCK CONNECTIONS

Label	Connect to
RX-	Receive Negative Terminal
RX+	Receive Positive Terminal
TX-	Transmit Negative Terminal
TX+	Transmit Positive Terminal
0V	Rx / Tx Common
OP1	Channel 1 Output, 4 – 20 mA
OP2	Channel 2 Output, 4 – 20 mA
0V DC	Power Supply & Output Common
24V DC	Power Supply 12 – 30 Volts DC
EARTH	Multi-core cable screen
EARTH	Housing ground wire

(inside the sensor housing)

Typical Applications

and solution being monitored.

SENSOR DISPLAY

The display provides information about the status of the sensor. It is a 3 line, 12 character wide backlit LCD. About 5 seconds after power-up, the Startup Display is shown for about 5 seconds. To optimise use of the Display, every 3 seconds (approx) it cycles through the input and output readings on two main display pages plus system messages if any are pending. If the Display does not alternate or show the information displays, that indicates the programme is halted or invalid (corrupt). If the program is badly corrupted, the Sensor may not be able to write to the display at all, in which case a software upgrade / reinstallation will be required. If system messages are being displayed, use the table at the back of this booklet or the Windows Help file to decode and expand the meaning of the message.

Configure, test, calibrate and monitor IET40 using the custom designed Smart Control Centre Windows 95 application software. The software is supplied on CD-ROM or is downloadable from www.lth.co.uk

Two industry standard analogue 4 - 20 mA current outputs can be used to monitor or form part of a control system. The outputs are electrically isolated from the liquid being measured, but not from the power supply or each other.

The Modbus[™] protocol digital serial data output can be used with or without the analogue 4 – 20 mA current outputs to relay more complex information about the status of the sensor

Display on Startup

Concentration (if applicable, else blank line)

Secondary Display (1)

O/P1 18.12mA O/P2 13.09mA ID255 Sys OK

Current Output on Channel 1 (calculated)
Current Output on Channel 2 (calculated)
Modbus Address and System Status OK (no
messages)

Secondary Display (2)

O/P1	18.12mA
O/P2	13.09mA
ID2	2 Msgs

Current Output on Channel 1 (calculated)
Current Output on Channel 2 (calculated)
Modbus Address and number of messages
pending

Message Display

Sys Messages	Fixed Information Text
	Up to 4 message numbers
	Up to 4 more message numbers

Software Upgrade Display

Software Upgrade In Progress

Fixed Information Text Fixed Information Text Fixed Information Text

Software Startup Fault

Flash Error xxxx xxxx Issue 2.000

Fixed Information Text showing Program Fault
The faulty checksum numbers as calculated
The software issue number

IET40 CONTROL CENTRE SOFTWARE

To install the operating software, simply insert the CD-ROM into your Windows 95 / 98 PC or laptop. The Autorun feature will take you through the installation. If Autorun is disabled on your PC, use the START – RUN method and select Setup.exe on the CD. Continue as instructed.

Programme user access security codes are (unless changed by the user)...

- For Configuration Access (Level 1 = minimum access), the password is 1
- For Calibration Access (Level 2 = minimum access), the password is 2
- For Installation Access (Level 3 = minimum access), the password is 3

Change these after Installing if others have access to the system to avoid unauthorised changes of setup.

MAIN WINDOW

The LTH Smart Sensor Interface is a new way of configuring vour instrumentation. The programme has been designed to maximise control over every aspect of the sensor's performance. from software loading and upgrading, to configuring and commissioning, through to monitoring the output of information from the sensor.

The Online HELP system will guide you effortlessly through setting up even the most complicated configuration to give optimum performance from your IET40 and control system.

The Smart Dialog Window is the Main Screen for the Control Application. After entering your Name and a current Password, each of the other main screens can be accessed as a series of property pages.

Designed from the outset to be Windows 95 compliant and to be instinctive for anyone familiar with traditional conductivity instruments. Any questions, look in the Help Index !

MONITOR PAGE

Solution Concentration.

This Tab consists of three main Groups of Instrument Monitoring.

Digital Sensor Data. This Group shows Digital information coming back from the sensor via the digital communications link. If a concentration range has been selected on any channel, including current output ranges, the Concentration box will show the calculated Current Output Data. This shows both of the Ranges selected for the two current outputs, and the Output Currents being transmitted by them. Sensor Configuration Information. This Text Only feature gives the 4 mA (Zero) and 20 mA (Span) points of the two Current Outputs.

SETUP PAGE

The Sensor Setup Tab is the lead in screen for configuring the majority of the IET40 options.

Standard and specific configurations can be saved and loaded from the hard disk drive to enable Users to maintain a database of setup files. These can be used to rapidly configure a new sensor without having to painstakingly go through

and check each setting individually.

In addition a Configuration Display and Print Button have been added and will be implemented later. Sensor Identification is shown in the form of a Manufacturers Serial Number and a User Plant or Tag Number.

Temperature Compensation is configured in this page. Temperature Compensation Units and Base Temperature apply to all operating ranges and cannot be set differently for different channels. If a standard Concentration Range has been selected on one of the current output or digital channels the compensation slope entered by the User is overridden by the software with the correct compensation slope for that chemical. The User slope applies to Conductivity or Special Range measurements.

Three Buttons take the User into the setup Windows for each of the Current and Digital output channels.

A Text Only panel shows the Software details of the Programme currently installed in the Sensor, including the name of the installer, the date of the installation and the Issue / version of software loaded.

TEST PAGE

The Test Tab gives the user a series of buttons which force the sensor current outputs to fixed levels of 2mA, 4mA, 12mA, 20mA, or 22mA for each of the two channels. Both are independent and can be set the same or different in this mode.

The 2mA setting tests low level fault or error current, 4mA is the "zero " or minimum output level, 12mA is the mid-point check

current, 20mA is the "span" or full scale output and 22mA tests the high level fault or error current.

The fixed current outputs are cleared (cancelled) when the programme is terminated or the communication link is broken, which means the sensor can't accidentally be left in this state.

CALIBRATION PAGE

The three main calibration operations are grouped together on this Tab.

- •Temperature Calibration Group:
- •Conductivity Calibration Group:

•Current Output Calibration Group:

As the IET40 is Factory Calibrated, it is not usually necessary to re-calibrate it. Should a re-calibration be

required, see details in the section on Calibration.

In the event of a failed Calibration, Error messages will alert you to the particular problem area, leading to a swift resolution of your problem.

SOFTWARE PAGE

The upgrade files required to carry out a software update will be available on the LTH Web site, and will be free to download. Also on floppy disk (at a pinch) the updated files are simply copied into the "\Program Files\LTH Smart" folder and the Smart Sensor Programme is executed as normal.

Press the Install

Software Button to access the Install Window.

Use the Dropdown Menu to select the new software file. If it does not appear, search for it using the Browse Button, which calls the Windows Open File Dialog. The Programme files are of the type *.HEX. When the correct file has been located and selected, Press the Install Button. The file will begin to download ina few seconds. The Install Progress Indicator gives a visual indication of the data transfer. The Software Status Panel updates to indicate a change of software has occurred.

COMMUNICATIONS PAGE

nual Device Setup	Device Finder	Carenaria store Post Sellings
Current Device ID 3	There is a	Use Control
Select(D-(0-247) 3	- Seator The	Constant I
Months II up dotters	Stop Search	Ueg.com z
		BaudRate Battory
Diange Sensor Address	Seach Doyn	Davada Testar
		Easty Turner
Iso 08. Servior Conins DK. A		Stop Bits
		Eller Control June 1
		10000000000000000000000000000000000000
		Load Delault Setup

There are many different computers capable of using this software, so LTH have built in the ability to tweak the basic serial data settings if you wish to do so.

Our advice is don't muck about with it, unless you know what you are doing, just use the standard Modbus settings. These can easily be restored in the event of corruption or

unauthorised fiddling. Simply Press "Modbus" to restore the Modbus Default Communications settings. The new settings will be stored automatically on exiting

the programme. The early releases of software and sensors will only use the default settings.

PASSWORDS PAGE

Four levels of access provided by the programme. Open Access to the front screen enables the Operator to enter a Username and Password.

Three Password levels are available to the user.

The Configure Password gives access to all Configuration options for all channels. The Calibrate Password gives all the above and the Calibration Window.

The Install Password gives all the above and enables the User to update the Sensor Operating Programme from a PC or laptop.

A fourth Password is used to access a Factory Setup Page which is not available to customers. The upgrade files will be available on the LTH Web site http://www.lth.co.uk/ in due course, and will be free to download on demand.

Address ID	2	3	4	5
ondina TAC	0	625.5	0	6
and with TVC	0	674.9	þ	0
Temperature 0	0	21.3	0	0
oncernation 🛛	<u>a</u>	p	P	0
Output t	a.	14.B	0	0
DUPUT Z D	0	2.41	0	0

CHANNELS PAGE

This Tab consists of 5 Groups of Instrument Monitorina Windows. It allows the operator to view up to 5 Sensors at the same time. No programming or modifications can take place in this mode. It is only active when this page is being displayed by the application. The Computer interrogates each Sensor in sequence and its data boxes are Six updated. Data measurements are extracted

from the sensor as follows. Non Temperature Compensated Conductivity (in mS/cm) Temperature Compensated Conductivity (in mS/cm) Temperature (in degrees C or F); Solution Concentration (in % or p.p.t. for sea water or TDS ranges) Channel One Current Output (in milliamps) Channel Two Current Output (in milliamps).

CURRENT OUTPUT CHANNEL 1 PAGE

Select Durent Output Space	
Candadavily with T.E. (n5/m)	Enable Error Signaling
iet il mit Neasurment Vaue 10 milit	ar Costing_module
el 20 Mésevenen Value 1000 0 #6.4	an -
аны Сири Пен Serup	Mig 08 Sensor Conno OK /
Edmonster Gaultrie	
I ment roman	
thal Dunnal well 5 dich. Boly	

To Setup the Channel One Current Output, first select an Operating Range or Source from the List Box. Then set the 4 mA and 20 mA values from within the selected range.

If either the T.D.S. or Special Ranges have been selected, then other items are revealed as a consequence and will have to be setup. A digital Filter can be

activated which then reveals a Dropdown List of filter periods. Error messages can be activated in the current loops by driving the output low (2 mA) or high (22 mA) on detection of a serious fault. The second output channel is identical in features and operation to this channel, but is completely independent. The Output currents share a common power supply so a loop isolator may be required for one channel if the installation experiences earth loop problems.

CURRENT OUTPUT CHANNEL 2 PAGE

As per channel 1 above.

DIGITAL OUTPUT DATA PAGE

To Setup the Digital Data Output, first select an Concentration Range if required from the List Box. It can be disabled by selecting Concentration Not Required.

If either the T.D.S. or Special Ranges have been selected, then other items are revealed as a consequence and will

have to be Setup correctly.

Temperature, Conductivity (both with and without Temperature Compensation) are always calculated and available through the digital data stream and therefore do not need to be selected by the User.

Three different digital Filters can be activated which then reveals a Dropdown List of filter periods.

CUSTOM RANGE SETUP PAGE

	Concernation	Conductivity	an optional description of the Custom
	11.10	(111 D	Factory Default Duriton Barge
Action Hange Profit 1	77.70	277.0	
uctors Plange Point 2	CL CV	Lat 0	
viton Range Point 3	311.30	301.0	
uton Hange Point 4	44.40	441.0	
actors Range Point 5	55 50	585.0	
actors Range Point 6	96.60	686.D	Sjoken Massage:
utan Banas Post 7	77.70	777.0	Highe, sens constant
uton Rance Poer S	89.80	6883.0	
oton Bana Poit 9	39.90	989.0	
ucton Flange Poet 9 Point 1 is not 0,0 a p Ibes of Points	99.90 airt at 0,0 iz add	1983.0	_

This feature will be implemented in second generation software issues.

This feature enables the sophisticated user to programme a customised range relating Conductivity and Concentration for chemical combinations not featured in our standard ranges.

Simply set the required

number of points in the curve, then enter the conductivity and concentration values into the available points in the table. If necessary, only one point need be entered, then the system assumes a starting point of 0,0. Remember to set the Temperature Compensation Slope to get the right results.

SENSOR CALIBRATION

The Sensor is supplied Factory Calibrated, so these procedures are only necessary in the event of doubt concerning the validity of the

calibration. Any part of the Calibration procedure below can be performed independently without the need to re-calibrate everything. Power up 10 minutes prior to calibration to stabilise the Sensor electronics.

Preparing for Calibration

- 1) Unscrew and remove the instrument housing cover.
- 2) Connect the monitor cable to the 15 way D-type connector (if needed).
- 3) Launch the LTH Windows Interface on the PC.
- 4) Check Communications in the LTH Interface Message Box.
- 5) If not, is Modbus ID on Sensor = ID on Comms Page.
- 6) Is cable connected to correct PC port, & port selected on Comms Page ?
- 7) Select the LTH Smart Interface Calibration Page.

Conductivity Calibration

A resistance box may be used in place of loop resistors. It should be of a lowinductance type with a short thick piece of wire. Note that the sensor calibrates as if it were uncompensated, but the display shows compensated conductivity.

- 1) Have the IET40 in air & nothing close to it (product, loop resistors, surfaces)
- 2) Click the "Calibrate 0 mS/cm" Button, and confirm it with the "Yes" Button.
- In about 10 secs, the LTH Interface displays Msg 0x61 to confirm the ZERO calibration.
- 4) Pass a 600 ohm loop resistor through the sensor and connect the ends together.
- 5) Click the "Calibrate 9.25 mS/cm" Button, and confirm it with the "Yes" Button.
- 6) In about 5 secs, the LTH Interface displays Msg 0x61 to confirm the 1st SPAN calibration.
- 7) Replace the 600 ohms with a 60 ohm loop resistor and connect the ends together.
- 8) Click the "Calibrate 92.5 mS/cm" Button, and confirm it with the "Yes" Button.
- 9) In about 5 secs, the LTH Interface displays Msg 0x61 to confirm the **2nd SPAN** calibration.
- 10) Replace the 60 ohms with a 6 ohm loop resistor and connect the ends together.
- 11) Click the "Calibrate 925 mS/cm" Button, and confirm it with the "Yes" Button.

12) In about 5 secs, the LTH Interface displays Msg 0x61 to confirm the **3rd** SPAN calibration.

Calibration Point	LTH Loop resistor	Resistance value
9.500 mS/cm	Red / Yellow	600.0 ohms
95.00 mS/cm	Red / Orange	60.00 ohms
950.0 mS/cm	Red / Blue	6.000 ohms

Temperature Calibration

- 1) Measure the true Temperature of the Sensor with the required accuracy.
- 2) This can be in-situ using an independent method of measurement.
- 3) Or it could be achieved by placing the Sensor in a Temperature controlled bath.
- 4) Wait until the Sensor has stabilised, say 10 minutes at Calibration Temperature.
- 5) Enter the Measured Temperature in the "**Enter Temperature**" Box of the Calibration Page.
- 6) The Temperature being returned by the Sensor appears in the "**Return Temperature**" Box.
- 7) Click "Calibrate Temperature Sensor" Button, confirm with the "Yes" Button.
- 8) In about 5 secs the LTH Interface displays Msg 0x62 to confirm Temperature calibration.

Current Output Calibration

- 1) Click the "Transmit 4mA" Button.
- 2) Accurately measure the Actual Output Current on both channels.
- 3) Enter these values in the "Enter Output 1" & "Enter Output 2" Boxes.
- 4) Click the "Calibrate Outputs" Button, and confirm it with the "Yes" Button.
- 5) In about 5 secs the LTH Interface displays Msg 0x63 to confirm the 4mA Output calibration.
- 6) Both Current Outputs should be transmitting 4mA, confirm this on the meter(s).
- 7) Click the "Transmit 20mA" Button.
- 8) Accurately measure the Actual Output Current on both channels.
- 9) Enter these values in the "Enter Output 1" & "Enter Output 2" Boxes.
- 10) Click the "Calibrate Outputs" Button, and confirm it with the "Yes" Button.
- 11) In about 5 secs the LTH Interface displays Msg 0x63 to confirm the 20mA Output calibration.
- 12)Both Current Outputs should be transmitting 20mA, confirm this on the meter(s).

On Completion of Calibrations

- 1) Remove 15 way D-type connector and re-place the housing cover.
- 2) The transmitter is now ready for operation.

SENSOR SETUP

This is a check list to remind you of the options which may need to be setup for your Sensor to work correctly. Not all options will be valid for all installations, so ignore those which don't apply in your case.

Page or Sheet	Settings to Check
Setup Page	Temperature Compensation Base and Slope
Setup Output 1 Sheet	Source, Zero and Span values, Filtering, Error Signalling
Setup Output 2 Sheet	Source, Zero and Span values, Filtering, Error Signalling
Setup Digital Sheet	Source Parameter, Filtering
Setup Special Sheet	User curve points as required
Communications Page	PC Serial Port, Sensor Device Address

SYSTEM MESSAGES

The IET40 provides the user with Setup and Installation Diagnostic Messages using an encoded system of two digit numbers. If the display shows any of these messages, they should be interpreted as follows...

If the error code is not listed in the table below, obtain a more up to date copy of this Guide (http://www.lth.co.uk/). The Windows Application Help File also contains more details.

Ms g	Meaning of Displayed Message	M s g	Meaning of Displayed Message
01	Msg 01Data Reply Overdue	48	
02	Msg 02Data Reply Timed Out	49	
03	Msg 03Message Acknowledge Overdue	50	
04	Msg 04Resetting Communications	51	Msg 51EE Cksum A Error
05	Msg 05Transmit or CRC Error	52	Msg 52EE Cksum B Error
06	Msg 06Receive or CRC Error	53	Msg 53EE Cksum C Error
07	Msg 07Function # Completed OK	54	Msg 54EE R/W Error
08	Msg 08Sensor Comms OK << >>	55	
09	Msg 09Receiving Data Block # of #	56	
10	Msg 10Download Issue Not Returned	57	
11	Msg 11Temp Comp Err	58	
12	Msg 12Cond Over-rng	59	
13	Msg 13Cond Under-rng	60	
14	Msg 14Temp Over-rng	61	Msg 61Cond Rng 1 Z L Err

15	Msg 15Temp Under-rng	62	Msg 62Cond Rng 2 Z L Err
16	Msg 16User Cond.Error	63	Msg 63Cond Rng 3 Z L Err
17	Msg 17User Conc.Error	64	Msg 64Cond Rng 4 Z L Err
18	Msg 18User No.Points Error	65	Msg 65Cond Rng 1 Z H Err
19		66	Msg 66Cond Rng 2 Z H Err
20		67	Msg 67Cond Rng 3 Z H Err
21	Msg 21Output 1 > 22 mA	68	Msg 68Cond Rng 4 Z H Err
22	Msg 22Output 1 < 2 mA	69	
23	Msg 23Output 1 Fault	70	
24	Msg 24Output 1 Cal.Err	71	Msg 71Cond Rng 1 S L Err
25	Msg 25Output 2 > 22 mA	72	Msg 72Cond Rng 2 S L Err
26	Msg 26Output 2 < 2 mA	73	Msg 73Cond Rng 3 S L Err
27	Msg 27Output 2 Fault	74	Msg 74Cond Rng 4 S L Err
28	Msg 28Output 2 Cal.Err	75	Msg 75Cond Rng 1 S H Err
29		76	Msg 76Cond Rng 2 S H Err
30		77	Msg 77Cond Rng 3 S H Err
31	Msg 31Preparing Software Download	78	Msg 78Cond Rng 4 S H Err
32	Msg 32Erasing Sensor Flash Memory	79	
33	Msg 33Flash Download Starting	80	Msg 80Non Specific Error
34	Msg 34Flash Block < <block#>> Transmitted</block#>	81	
35	Msg 35Sensor Is Now Restarting	81	
36	Msg 36Requesting Download << >>	83	
37	Msg 37Faulty Download Acknowledge Message	84	
38	Msg 38Flash Block < <block#>> Download Error</block#>	85	
39	Msg 39Faulty Sensor Restart Message	86	
40		87	
41	Msg 41Setting New Modbus ID << ID#>>	88	
42	Msg 42Start Modbus Scan ID << ID#>>	89	
43	Msg 43Restore Last Modbus ID << <id#>></id#>	90	
44	Msg 44Scanning Modbus Device ID < <td>91</td> <td>Debugging Message</td>	91	Debugging Message
45	Msg 45Waiting for User Input	92	Debugging Message
46		93	Debugging Message

47 94 Debugging Message				
	47		94	Debugging Message

UPGRADING THE SOFTWARE

Full Instructions, the latest software Flash upgrades and the most recent version of the LTH Windows[™] Smart Interface Application will be available from the LTH Web site at http://www.lth.co.uk/ A password may be necessary and is obtained by using the online registration facility. Until the website is setup to distribute this information, the latest files can be e-mailed on request, and guidance in carrying out the upgrade is available in the LTH Control Centre Help Files. Contact LTH Electronics for further information.

MODBUS FUNCTIONALITY

To use the Modbus features of the IET40 it is necessary to know the structure of the messages, so they may be used to interrogate or setup the IET40. For general information, refer to the Modicon Modbus Protocol Reference Guide or similar. The IET40 uses RTU framing mode. It only operates at 9600 baud. The IET40 does not use standard Modbus Function Codes as the complexity of the IET40 requires much more data to pass between the device and controller than is available in the standard messages. If you wish to use the system in this way, contact LTH Electronics for further information.

AVAILABLE MODBUS COMMANDS FOR IET40

Function 0x31:	Reset Non-volatile memory to default setup
Function 0x34:	Read Miscellaneous Information from Sensor
Function 0x35:	Read Conductivity, Temp., Current Outputs, Error Messages
Function 0x30:	Scan for other IET40 devices on the Network
Function 0x40:	Set Current Outputs to fixed values
Function 0x50:	Write Temperature Compensation Coefficient
Function 0x51:	Write Channel1 Current Output Settings
Function 0x52:	Write Channel2 Current Output Settings
Function 0x53:	Write Digital Data Output Settings
Function 0x55:	Write Special Concentration
Function 0x56:	Write SpecialConductivity
Function 0x57:	Write Special Range Text (1 st half)
Function 0x58:	Write Special Range Text (2 nd half)
Function 0x60:	Copy All Data (16 Blocks) From Sensor to Control Centre
Function 0x61:	Calibrate Conductivity
Function 0x62:	Calibrate Temperature

- Function 0x63: Calibrate Current Output
- Function 0x64: DO NOT USE
- Function 0x65: Reset All Calibrations to Default values
- Function 0x66: Force IET40 toReset
- Function 0x67: DO NOT USE
- Function 0x68: DO NOT USE
- Function 0x69: DO NOT USE
- Function 0x70: Write Slave Address to IET40
- Function 0x71: DO NOT USE
- Function 0x72: Write Tag Or Plant Number TO IET40
- Function 0x73: DO NOT USE
- Function 0x74: DO NOT USE
- Function 0x75: Calibrate Temperature Zero
- Function 0x76: Calibrate Temperature Span

Default response to all others: return exception ILLEGAL_FUNCTION

The Complete Message structure is too complex to include here, please apply to LTH Electronics if you would like further information.

SPECIFICATION

Mounting	Insertion into line (screw in). Sanitary fittings				
Environmental	Sensor and housing IP67 (submerged to 1 metre).				
Dimensions	125mm x 125mm x 185mm approx.				
Storage temp.	Maximum -40 °C to + 125 °C. Serious damage will occur outside these limits				
Working temp.	Sensor 0°C to +100°C & short bursts to +135°C for sterilizing. Housing / electronics -20°C to +70°C				
Input range	AGC optimizes the range of the unit: 1 mS/cm to 1000 mS/cm.				
Analogue outputs	Conductivity 1mS/cm to 1000 mS/cm. TDS, ppm. Salinity 40ppt. Concentration (% wt/vol.) ranges to 16.0% NaOH, 30.0% NaCl, 15% HCl, 25% H ₂ SO ₄ , 25% H ₃ PO ₄ .Special range curve.				
Temperature measurement	Using on-board Pt1000 film element, Class A with digital signal transmission. Normal Operating Range of 0 to 130 °C				
Temperature compensationProgrammable using internal Pt1000: in or out, base 20°C 25°C, variable slope 0.0 - 3.9 % / °C over 0 to 100°C.					
Configuration	PC based Windows 95 software				
Calibration	All Calibrations carried out through the Windows Interface.				
Accuracy	Typically 0.2% of reading (display) and 0.3% (current outputs)				
Ambient variation	0.01 % / °C span typical				
Current Output	Isolated (2kV liquid to electronics) 4-20 mA loop into 750 ohms.				
Messages & Diagnostics	Current output to transmit 2 or 22 mA on detection of fault (if selected by the User). Digital messages can be read through the Serial Port.				
Comms	Via RS 485 serial link through a converting device to PC RS232 Serial Port				
Operating Software	Upgradable in the field, with the sensor in-situ, using a laptop PC running Windows 95				
EMC	Immunity standardBS EN 50082 -2:1995Emissions standardBS EN 50081-1:1992				
Low Voltage Directive	Safety standard BS EN 61010-1:1993				
Test methods	Test standard BS 1427				
Power Supply	Supply 12 to 30 Volts DC, nominal 100 mA. (load impedance reduces with lower supply voltage).				

EC Declaration of Conformity

LTH Electronics Ltd

declare, accepting full responsibility, that the product

IET 40 Conductivity Transmitter

to which this declaration relates, conforms with the following standards:

EN 50081 - 1 : 1992 (Generic Emissions) EN 50082 - 2 : 1995 (Generic Immunity) in accordance with the provisions of the 89/336/EEC (EMC) directive. (and as amended by 92 / 31 / EEC)

BS EN 61010 - 1 : 1993 (Equipment Safety) in accordance with the provisions of the 72/23/EEC (Low Voltage) directive.

The equipment is exempt (because there are no moving parts) from the 89/392/EEC (Machinery) directive.

Issued in the United Kingdom on 04 / 05 / 2000 for the company by:

Kerin M. Higgs

Kevin M. Higgs C. Eng. (Technical Manager)

🗶 KLAY-INSTRUMENTS

Nijverheidsweg 5 Postbus 13 Tel: 0521 591550 E-mail: info@klay.nl www.klay.nl

7991 CZ DWINGELOO 7990 AA DWINGELOO Nederland

Page 26